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Datasets 

We used the following datasets in the analyses described herein; all datasets are described and 
summarized in the Data Index7. Those generated for the study are either stored in the eCommons 
open access digital repository (Datasets A, B, C, E, F, G, I, J) and can be accessed via DOIs provided 
in the reference list at the end of this document, or are provided in a Supplementary Table (Dataset 
H). Those we compiled from existing public online repositories (Datasets D, K, L, M) can be accessed 
via their listings in the Data Index. 

Data Index: Overview of study datasets, structure, sources, availability, associated analyses7  

Dataset A: Register of Hendra virus spillovers to horses12 

Dataset B: Register of flying fox roosts in the study area26 

Dataset C: SEQ monthly roost distribution and population estimates27 

Dataset D: Oceanic Niño Index (ONI)7 

Dataset E: Months of nectar shortage29 

Dataset F: Records of wildlife rehabilitation centers30 

Dataset G: Assessments of pre-weaning reproductive output31 

Dataset H: Paired roost foraging data - Supplementary Table 4 

Dataset I: Landcover data28 

Dataset J: Winter flower pulses32 

Dataset K: Modelled pre-clearing vegetation types, Southeast Queensland bioregion7 

Dataset L: Forest cover7 

Dataset M: Queensland Statewide landcover and trees study7 

 

Food Shortage Regression Tree Model; compiled input data, output data and model script33 

Bayesian Network Model; compiled input data and output figure34   
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1. Register of Hendra virus spillover events in Australia 

Data on the location and date of all detected Hendra virus spillovers to horses from its initial 
detection in 1994 until July 2021 were collated from government notices (New South Wales 
Department of Primary Industries; Biosecurity Queensland, Queensland Department of Agriculture 
and Fisheries; Business Queensland), ProMED-mail and local media reports, and personal 
communications during spillover events (Data Index7, Dataset A12). As of 31 January 2021, a total of 
63 Hendra virus spillover events had been detected in Australia. The locations of infected properties 
(IP) are reported as the nearest town or regional center. Dates represent known or estimated dates of 
horse death or euthanasia. The putative date of spillover was calculated as 14 days prior to date of 
death or euthanasia of the first horse infected on a property, based on epidemiological observations 
of the incubation period in horses48. 

The probability of detecting Hendra virus spillovers may have varied over time. Around 
midwinter 2008, the Hendra virus case definition in horses broadened to include a febrile horse 
exhibiting respiratory or neurological signs, leading to an increase in testing49. At the same time, 
incorporation of a new molecular assay into screening may have increased sensitivity of detection9. 
Nevertheless, we did not observe an increase in spillover events post-2008 until after the 2010 food 
shortage. In November 2012, an equine vaccination for Hendra virus was released50, likely reducing 
the incidence of spillover. Vaccination should decrease the number of observed spillover events but 
vaccination rates are relatively low51. We do not expect these factors have affected the overall pattern 
of observed events reported in this study (ONIàfood shortageàHendra virus spillover).  

A novel Hendra virus variant, genotype 2 (HeV-g2), was discovered retrospectively in 2021 in a 
horse that died after acute illness in 201552. Importantly, HeV-g2 is not detected by the diagnostic 
assays used to detect prototype HeV (HeV-g1) in our study area prior to 2021 due to the high 
specificity of assays and the 84% pairwise nucleotide identity genome-wide between the two 
variants52. The variant could not have been detected in Hendra virus surveillance efforts in our study 
area from 1994 until 2021 and therefore does not affect the results of this study. HeV-g2 RNA has 
been detected in flying fox tissue samples53 and in flying fox urine54, however in the absence of data 
on rates of HeV-g2 spillover to horses prior to 2021, we have focused our analyses on HeV-g1 
spillover. Further data on spillover of both variants over coming years will be required to assess 
whether results from our analyses of HeV-g1 (hereafter, Hendra virus) also apply to HeV-g2. 

 

2. Study area 

Our study was conducted in the subtropics of eastern Australia within an area where 65% of all 
Hendra virus spillovers recorded from 1994 to 2020 were located (41 of 63, Dataset A12). To define 
the boundary of our study area, we placed 100 km buffers around subtropical spillover sites recorded 
in 2011, a year when a uniquely high number of spillovers were recorded12 (n=17) and constructed a 
minimum bounding shape around the perimeter (Fig. 1, Extended Data Fig. 1A). Data collection and 
collation for our study was focused within this area. Two spillovers that occurred in the subtropics 
outside of this study area were omitted (Calliope, Queensland, 2014; Scone, New South Wales, 
2019).  

Detailed surveys of flying fox roosts in the far southeast region of Queensland, commencing in 
1996, defined a smaller southeast Queensland (SEQ) study area within the larger study area 
(Extended Data Fig. 1B, Dataset B26, Dataset C27). The boundary of the SEQ study area was defined 
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by placing buffers scaled to 20 km feeding distances55 around the 1996 flying fox survey sites and 
dissolving all buffers to a single area. 

Hereafter, ‘study area’ refers to the larger study area based on spillover detection, and ‘SEQ 
study area’ is used to refer to the smaller study area that focused on flying fox population dynamics 
and loss of foraging habitat. 

 
3. Temporal patterns of flying fox roost formation 

To describe long-term patterns of spatial ecology and roost formation, we created a register of 
active roost sites within the study area, compiled over a 25-year period from 1996 to 2020 (n = 361 
roost sites; Dataset B26). We acquired information from multiple sources: records held by New South 
Wales (NSW) and Queensland (Qld) state governments; broad-scale surveys conducted 1998–2005 
and 2012-2020; records held by local land managers, landowners, experienced observers and field 
records of authors (see Data Index7 for further details and references). Data recorded in the register 
include roost name, location (latitude, longitude), state, year of formation, the most recent year of 
recorded occupation, occupation in winter and occupation by black flying foxes Pteropus alecto in 
winter of each year. 

‘Active roosts’ were defined as roosts known to be occupied in the previous 10 years, which is 
consistent with the timeframe used by the Australian Commonwealth for identifying ‘nationally-
important camps’56. Year of roost formation was allocated based on the date of first observation by 
landowners, land managers and neighbors7. Roosts that were established prior to the start of our 
ecological study-period in 1996 were assigned 1996 as their establishment date, although many had 
longer histories of occupation. Where year of first observation was uncertain, indicative categories 
were assigned. These sites were excluded from assessments based on year of formation. Overall, we 
were able to assign year of formation to 88% of the roosts formed after 1996.  

 

4. Characteristics of active roosts over time 

We used year of formation and year of most recent observation to compile lists of active roosts 
for each of the 25 years in our longitudinal study (Supplementary Information Section 3, Dataset 
B26). Then for each active roost in each year we assembled data on 1) the mean distance to nearest 
active roosts, 2) binary occupation by flying foxes during winter months, 3) binary occupation by 
black flying foxes Pteropus alecto during winter months, and 4) identification of the site as the source 
roost for spillover(s). The mean distance to nearest active roosts was calculated from coordinates of 
the target roost and the nearest active roost in quadrats defined by cardinal directions. Source roosts 
for Hendra virus spillover were assumed to be the nearest roost to the spillover based on analyses 
presented in Supplementary Information Section 13.  

Records of winter occupation were collated from the sources for Dataset B listed in the Data 
index7. Range-wide winter censuses of flying foxes commenced in the study area in 199817 and few 
roosts were directly observed in winters of 1996 and 1997. Unobserved roosts were initially assigned 
‘NA’ status. Expert knowledge and census data from the years that followed were then used to assign 
presumptive winter occupation status as follows. 
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1) Roosts located outside the known range of black flying foxes were presumed unoccupied by black 
flying foxes. A southward shift in the range of that species was documented during our study; 
those data guided assignment of roost occupancy57.   

2) Expert knowledge and census data from adjoining years or near adjoining years (1998-2002) were 
used to assign occupancy to roosts where patterns were consistent over 2-3 consecutive years.  

3) ‘NA’ status was assigned to all other roosts.  

 

5. Change in flying fox populations in southeast Queensland (SEQ) 

To describe change through time in the distribution of flying foxes in the far southeast 
Queensland region, we compared monthly population estimates of black flying foxes and grey-
headed flying foxes (P. poliocephalus) recorded in roosts during two time periods: 1996-1999 and 
2009-2012 (Dataset C27). Roosts that formed within the SEQ study area boundary were added to 
surveys as they were reported. A total of 33 monthly population surveys (synchronized across all 
roosts so that they occurred within 3 consecutive days) were conducted in 1996–1999; 39 surveys 
were conducted in 2009–2012. These data provided information on the number of roosts, population 
estimates of each species at individual roosts, and the total estimated population size within the study 
area. 

The total number of flying foxes present in the study area within each time period was variable 
due to the high mobility and irregular migration patterns typical of the species14,15,22,58. The data 
describe monthly aggregated change in roost size between the two study periods, a decline in 
combined species estimates and consistency in the seasonal estimates of black flying foxes (Extended 
Data Fig. 4A-C).   

 
6. Monthly variations in climate 

Broad-scale variations in climate were tracked using monthly readings of the Oceanic Niño 
Index (ONI; Fig. 2A, see Dataset D, see Data Index7). The ONI was developed by the USA National 
Oceanic and Atmospheric Administration to monitor and rank the relative strength of the El Niño-
Southern Oscillation. It tracks anomalies in running 3-month average sea surface temperatures in the 
east-central tropical Pacific Ocean between 120° and 170°W (the Niño 3.4 region) against 30-year 
averages to produce the ONI value for a 3-month interval. Values > 0.5 are classified as El Niño, 
values <-0.5 are classified as La Niña. 

We compiled monthly ONI readings from December-January-February 1996 to November-
December-January 2020 (Fig. 2A). 

 

7. Periods of acute food shortages 

Flying foxes in southeast Australia have been reported to experience periods of reduced nectar 
production in native diet plants that impact fitness via reduced nutrient intake and starvation22,59. We 
sought to test the association between the presence or absence of nectar shortage in flying fox diet 
species (as assessed by qualitative reports of nectar productivity from commercial apiarists) and 
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anomalies in measures of flying fox fitness using a regression tree analysis. Additionally, since nectar 
productivity data is a commercial resource for apiarists and, therefore, difficult to obtain, we sought 
to test whether more readily obtainable measures of flying fox fitness were a useful proxy for acute 
food shortages.  

7.1 Periods of Nectar Shortage - Background and Methods  

BACKGROUND 

 The commercial apiary industry in southeast Australia comprises enterprises with >50 hives who 
respond to spatio-temporal variations in nectar production by moving their hives to maximise honey 
production and minimise costs of supplemental feeding60. Commercial apiarists primarily utilize 
native forests and adopt nomadic practices to track highly variable nectar and pollen resources61, 
much like nomadic bats. The tree species utilized by the Pteropus bats in southeast Australia are also 
utilized by commercial apiarists (Supplementary Table 1) and European honeybees in the region 
experience the same winter/spring periods of food bottleneck as do nectar dependent bats62. In the 
absence of direct and extensive data on nectar availability we have used data derived from 
commercial apiarists to provide a spatio-temporal response variable of nectar availability that is 
produced independently to the flying fox study presented here. This variable is based on the deep 
system knowledge and multi-generational experience of apiarists61,62; however, it is a subjective 
assessment and as such, we determined the simplest and most accurate response should be a binary 
response recording either a nectar shortage or not. 

Extensive nectar monitoring: The development of detailed and quantitative methods to 
systematically track eucalypt flowering using remote sensing techniques is an area of active research, 
funded to support the apiary industry63. However, progress has been slow, and an accurate and 
comprehensive method is unlikely in the near future64. For several years we have used the commercial 
records of individual apiarists to track these resources. Initially, we used this approach to characterize 
flowering pulses associated with the movements of individually radio-tagged Pteropus 
poliocephalus14.  Subsequently this was extended to identify periods of broad-scale food shortage 
and predict flowering after periods of food shortage24. 

METHODS 

We aim to produce a binary, monthly assessment of periods of absence or near absence of nectar 
production from bat diet plants in native forests in southeast Australia. We have identified that the 
most consistent method for spatio-temporal assessment of nectar shortages is through direct 
communications with the commercial apiary industry and our method is based on verbal 
communications with individual apiarists and their representatives.  Information on the availability 
of native food resources is highly valued during commercially competitive periods of nectar shortage 
and the acquisition of accurate, commercial reports from apiarists is typically provided in confidence. 

Network of contacts: We established a network of contacts comprising a core group of 1) apiarists 
that manage substantial enterprises (hundreds of hives), 2) active members of industry support groups 
(federal, state and local industry associations, government advisory personnel) and 3) honey packers 
to whom apiarists sell their products. Members in each of these categories track nectar resources over 
substantial areas either directly or through their member groups and other connections. 

Surveys: We communicated with members of our contact group verbally (via telephone) which 
enabled us to seek additional information or clarification at the point of contact if needed while at the 
same time avoiding sensitivities over the confidentiality of written responses. 
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Supplementary Table 1. Overlap between nectar sources for bats and bees assessed by 
characterizing native species in the diet of Pteropus species16 using scores of the importance of native 
plants as resources for the apiary industry62. Species are scored on a scale of 1 to 5 against a set of 
standard criteria that consider the nutritional value of nectar and pollen, distribution, and hive 
management including disease management.  Of the 53 native trees on the bat diet list, 93% (49) were 
assigned scores of importance to the apiary industry of 3 or higher, median score = 3. Four of the 
seven species that contributed to winter flower pulses in this study, highlighted in grey, (Extended 
Data Fig. 9) were assigned the highest score of 5. 

Species  Common name  Apiary score 
scale 1-5 Comments 

Corymbia maculata  Spotted Gum  5   
C.  variegata Northern Spotted Gum  5  
Eucalyptus albens  White Box  5   
E. camaldulensis  River Red Gum  5  
E. macrorhyncha Red Stringybark 5  
E. melliodora  Yellow Box  5  
E. muelleriana  Yellow Stringybark  5  
E. paniculata  Grey Ironbark  5  
E. siderophloia  Grey Ironbark  5   
E. sideroxylon  Mugga Ironbark  5  
Lophostemon confertus  Brush box  5  
Melaleuca. quinquenervia  Five-veined Paperbark  5   
C. gummifera  Red Bloodwood  4  
E. andrewsii  New England Blackbutt  4  
E. fibrosa  Broad-leaved Ironbark  4  
E. pilularis  Blackbutt  4  
E. saligna  Sydney Blue Gum  4  
E. acmenoides  White Mahogany  4  
Angophora costata Smooth-barked Apple  3  
A. floribunda Rough-barked Apple 3  
Banksia serrata  Old Man Banksia  3  
B. integrifolia v. integrifolia Coast Banksia 3  
C. eximia  Yellow Bloodwood  3  
C. henryi  Large-leaved Spotted Gum  3  
C. intermedia  Pink Bloodwood  3  
C. trachyphloia  Brown Bloodwood  3  
C. citriodora citriodora  Lemon-scented Gum  3  
E. campanulata  New England Blackbutt  3  
E. deanei  Mtn Blue Gum  3  
E. grandis  Flooded Gum  3  
E. maidenii  Maiden’s Gum  3  
E. melanophloia  Silver-leaved Ironbark  3  
E. parramattensis  Parramatta Red Gum  3  
E. piperita  Sydney Peppermint  3  
E. planchoniana  Needlebark  3  
E. punctata  Large-fruited Grey Gum  3  
E. resinifera  Red Mahogany  3  
E. rummeryi  Steel Box  3  
E. seeana  Narrow-leaved Red Gum  3  
E. tereticornis  Forest Red Gum  3   
E. tricarpa  Red Ironbark  3  
Syncarpia glomulifera  Turpentine  3  
C. tessellaris  Carbeen  2  
E. amplifolia  Cabbage Gum  2  
E. botryoides  Southern Mahogany  2  
E. moluccana  Grey Box  2 associated with fermentation of honey in hives 
E. propinqua  Small-fruited Grey Gum  2  
E. robusta  Swamp Mahogany  2 identified as source of Nosema ceranae infections 
Grevillea robusta  Silky Oak  2 highly restricted distribution 
E. bancrofti  Orange Gum  no score sparsely distributed 
E. cloeziana  Gympie Messmate  no score distribution outside area considered 
E. major  Grey Gum  no score restricted distribution 
Castanospermum australe Black bean  no score sparsely distributed 
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We requested assessments of the native tree species apiarists ‘worked’ (targeted nectar source) at 
monthly intervals, the locations where their hives were placed, a qualitative indication of productivity 
of the resource and, where possible, an indication of the anticipated duration of the resource. Apiarists 
also monitored budding in order to anticipate and plan movement of hives in coming months and we 
elicited information about this when available. We verified reports using one or more independent 
members of our network. 

We used our knowledge of the native diet plants used by bats (Supplementary Table 1) and their 
distribution16 to target efforts. We commenced a monitoring period by eliciting information on 
resources in the most consistently productive regions in our study area: southeast Queensland and 
northeast New South Wales. If we were able to verify productive flowering from diet plants in this 
region, we classified the month as “not a food shortage”. If we were unable to verify productive 
flowering, we expanded the area of surveillance to include other potentially productive regions. 

In our experience, when there was a surplus of nectar in native forests, our contacts were open 
and forthcoming with information. When conditions were marginal and there was competition for 
information on productive forest areas, greater efforts were required to verify conditions. When acute 
conditions occurred, we expanded the range of the apiarists we contacted to capture more detailed 
local knowledge.  At that point our contacts reported the changes they made to management practices 
to mitigate the impact of nutritional stress and risk of starvation to their bees. Those practices included 
withdrawing hives from native forests, supplementary feeding, movement of hives onto crops for 
which no financial reward was received and sacrificing hives to maintain a core, healthy group. 

If we were unable to verify nectar production in native forests or were made aware of starvation 
management practices, we classified the month as “nectar shortage”. 

Data were compiled over a 22-year period from January 1998 to February 2020 (Dataset E29). 
We recognise that this method of data acquisition is subjective and time consuming. The regression 
tree analysis presented in this manuscript represents an initial endeavour to develop a proxy for food 
shortage based on reliable, long-term data that sit outside the constraints of one-on-one commercial 
in-confidence experiences. We are now developing this by using explainable AI techniques to 
develop accurate decision trees for identifying food shortage months based on environmental and 
ecological variables. 

The Griffith University Human Research Ethics Committee approved the research (GU Ref No: 
2022/765) and informed consent was obtained from all human research participants. 

 7.2 Wildlife rehabilitation intake data 

We identified three measures of fitness in flying foxes for which long-term data were available 
in our study area: rates of intake into wildlife rehabilitation centers, body mass recorded by animal 
rehabilitation centers at the time of encounter, and annual rates of pre-weaning reproductive output 
(Dataset F30, Dataset G31). Flying foxes present to wildlife rehabilitators due to poor condition, illness 
or injury. We assume that in the absence of treatment, rescued flying foxes would likely die, and 
therefore use data on flying fox intakes as a proxy for mortality. We used the records of wildlife 
rehabilitation organizations in the Hendra virus study area to track trends through time in intake and 
body mass (g) of black flying fox P. alecto (BFF), grey-headed flying fox P. poliocephalus (GHFF), 
and little red flying fox P. scapulatus (LRFF) (Dataset F30). Data were compiled over nearly 20-years 
from January 1998 – May 2003 and January 2006 – February 2020 in the Northern Rivers (NR) 
region of NSW (latitude -28.5 to -29.0). We focused on this region because it is located near the 
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latitudinal midpoint of our study area, 11 spillovers were recorded within its boundary from 1994 to 
2020 and because wildlife rehabilitation data was recorded consistently using standard methods over 
the extended data collection period. Trends in these data are expected to be broadly representative 
across the remainder of our study area. 

Encounter records: We acquired daily records of flying foxes encountered by rehabilitation 
practitioners, initially from the Northern Rivers Wildlife Carers rehabilitation group, and from the 
NR Branch of the Wildlife Information Rescue and Education Service (NR WIRES) commencing in 
2006, the year that branch formed (Dataset F30). No records were available from June 2003 through 
December 2005. Data were filtered to exclude short spikes (1-2 days) in encounters associated 
primarily with impacts of severe weather conditions, notably extreme heat identified by days when 
maximum ambient temperature exceeded 42oC65.  

Morphometric data: Body mass (g) and forearm length (mm) of adults were included in the data 
if the measures were taken prior to treatments such as rehydration that could influence body mass 
(Dataset F30).  These measurements were not routinely collected, limiting their power within 
analyses. From January 2006 – February 2020, pre-treatment body mass records faceted to age, 
species and sex were uncommon and highly inconsistent, particularly in non-food shortage periods 
when few individuals were handled. Data collated from 1998-2003 included fewer pre-treatment 
mass and forearm measures and this time period was therefore not included in the regression tree 
analysis.  

 7.3 Annual reproductive output 

Poor nutrition during winter/spring food shortages coincides with late gestation, birth and early 
lactation in adult females and is expected to affect annual reproductive success via loss of pregnancy 
or insufficient lactation leading to pup starvation. We assessed annual reproductive output at roosts 
using the percentage of females carrying young in late December/early January (pre-weaning) 
(Dataset G31, Extended Data Fig. 2A). A minimum of 10 roost trees containing adult reproductive 
groups was selected randomly in each roost. In each tree, an individual animal was selected and, 
using binoculars, the sex and reproductive status of nearest neighbors were recorded until 10 adult 
females had been sampled (≥ 100 females sampled per roost per year). P. alecto and P. poliocephalus 
conception occurs in April, births center around October, and weaning occurs immediately prior to 
the subsequent mating season. Measurements of pre-weaning reproductive output from January were 
therefore applied in the model to the output from that entire birth cohort (months of April through 
March). 

Assessments of pre-weaning reproductive output were made at a total of 15 roosts in our study 
area during the 23-year study, and the roosts sampled varied between years due to variations in 
accessibility, occupation and the number of adult females present (Dataset G31). Sites affected by 
extreme temperature in the weeks preceding annual assessments were excluded. To be spatially 
consistent with the wildlife rehabilitation intake and body mass data, reproductive output data for 
input in the model was acquired from 4 roosts in the NR region (Booyong, Lumley Park, Rotary Park 
and Kyogle roosts).  

7.4 Oceanic Niño Index (ONI) Data 

Finally, we incorporated monthly Oceanic Niño Index (ONI) measurements from National 
Oceanic and Atmospheric Administration as an index of broad-scale variations in climate 
(Supplementary Information Section 3, Dataset D7).  
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7.5 Regression Tree Methods 

The regression tree approach aims to identify the simplest set of rules that can be used to assign 
known classes according to potential explanatory variables. Here it is used to first assess whether 
various explanatory variables (including ONI, flying fox encounter records, pre-treatment body mass, 
and pre-weaning reproductive output) can correctly identify months of presence or absence of nectar 
shortage as recorded from apiary data (and thereby demonstrate their potential as proxies). The 
Recursive Partitioning algorithm ‘rpart’66 splits the data recursively into groups, so that at each stage, 
the partition is made based on the explanatory variable that results in increasingly homogenous 
groups with respect to the presence or absence of flowering. Resulting models can be represented as 
binary decision trees. All data not already a monthly measurement was aggregated or divided to the 
month level and was restricted to the period for which consistent data were available: the 14-years 
between January 2006 – February 202033. The regression tree was fit from the ‘rpart()’ function in 
the ‘rpart’ R package, that results from minimizing 10-fold cross validation error66.  

 7.6 Features assessed in the food shortage predictive model 

1. NUMBER OF FLYING FOXES ENCOUNTERED BY NR WIRES 
• Monthly count of flying foxes in the records of NR WIRES,  
• One-month lag of monthly counts. 

2. MORPHOMETRIC DATA 
• Adult BFF female mass (minimum monthly, lower 0.25 quantile, mean)  
• Adult BFF male mass (minimum monthly, lower 0.25 quantile, mean) 
• Adult BFF female mass/forearm (minimum monthly, lower 0.25 quantile, mean) 
• Adult BFF male mass/forearm (minimum monthly, lower 0.25 quantile, mean) 
• Adult GHFF female mass (minimum monthly, lower 0.25 quantile, mean)  
• Adult GHFF male mass (minimum monthly, lower 0.25 quantile, mean) 
• Adult GHFF female mass/forearm (minimum monthly, lower 0.25 quantile, mean) 
• Adult GHFF male mass/forearm (minimum monthly, lower 0.25 quantile, mean) 

3. ANNUAL REPRODUCTIVE OUTPUT 
• Annual Dec/Jan measurements of percent adult females with young applied to 

months of April through March (for Booyong/Lumley roost, for Rotary Park/Kyogle 
roosts, and for mean and minimum across both roosts) 

4. ONI 
• Indicator if the month is Sep/Oct/Nov/Dec and if an ONI of greater than or equal to 

0.8 occurred within last 11 months. 

7.7 Results 

The apiarist data identified 9 years in which periods of nectar shortage occurred, all within winter 
or spring (1998, 2000, 2003, 2007, 2010, 2012, 2013, 2016, and 2019). They ranged in length from 
1 to 6 months (Supplementary Table 2, Dataset E29). 

Using data collected from 2006 to 2009, the regression tree selected two explanatory variables 
for identifying months of reduced fitness (referred to here as food shortage): monthly counts of flying 
foxes recorded by NR WIRES and minimum percent females with young in local roosts the following 
January30,31 (Extended Data Fig. 3). Each of these measures varied widely during the 2006-2020 study 
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period: monthly counts of flying fox intakes ranged from 0 to 150 (median 14, n = 170) and minimum 
percentage females with young ranged from 3 to 99 (median 87, n = 37).  

All months with counts of flying foxes greater than or equal to 30, and with a minimum 
percentage of females with young pre-weaning of less than 79, were classified by the model as a food 
shortage month, while all other months were classified as non-food shortage33 (Extended Data Figs. 
2 A, B, 3). On a monthly basis, using the two classification rules, the model was highly accurate: 164 
out of 170 months (96.5%) were consistent with the apiarist classifications (Supplementary Table 
2,3). On an annual basis, the model identified five of the six apiarist identified nectar shortage years 
between 2006 and 2019: winter and/or spring months of 2007, 2010, 2013, 2016 and 2019, and all 9 
of the non-nectar shortage years (Supplementary Tables 2,3). It did not identify the short food 
shortage identified by apiarists in October 2012 (see more detail below). 

A small number of months (n=6) were identified as food shortage by one method but not both 
methods (Supplementary Table 2). Firstly, three months (in 2013 and 2019) were identified as 
shortages by the model, but not by apiarists. Each of these three months immediately preceded or 
immediately followed months of shortage identified by both apiarists and the model and contained a 
small number of days at the beginning or end of the period of rapid increase in encounters. The 
influence of those days was sufficient to push encounter numbers over the classification threshold 
(≥30) but was not sufficient for apiarists to classify the entire month as nectar shortage. Secondly, 
two months (August and September in 2010) out of the three identified as shortages by apiarists but 
not by the model, presented as dips in the monthly flying fox intake in the middle of an extended and 
severe 6-month food shortage, with correctly assigned months on either side (July/August and 
October/November). None of these mismatches affected the binary designation of a presence or 
absence of a food shortage in those years. Finally, the remaining month that was not identified as a 
food shortage month by both methods, October 2012, was identified as a nectar shortage by apiarists, 
but not as food shortage by the model. It was the only month in 2012 that was identified by either 
method and was the only instance where the model failed to predict a year identified as nectar 
shortage by apiarists.  

When applying the classification rules from the regression model to intake data and reproductive 
output data available from 1998–2003, three additional years were identified as food shortages. All 
three years (1998, 2000 and 2003) were consistent with apiarist data and 60 out of 60 months from 
1998–2002 were correctly assigned. From 2003–2005, reproductive output data could be used to 
assign presence/absence of a food shortage year, however the absence of monthly intake data 
precluded resolution of the result to months (Supplementary Table 2, Dataset F30).  

To further explore the relationship between the nectar shortage and bat fitness data, we also 
applied the model output to fitness data acquired in the Mid North Coast (MNC) region of NSW. The 
MNC WIRES branch is located approximately 90 km south of the southern extent of the NR region. 
Flying fox count data were acquired from the MNC WIRES rehabilitation center over 183 months 
from 2005-2020 (Dataset F30) and reproduction data was acquired from 3 roosts in the region 
(Bellingen Island, Nambucca Heads and Bowraville, Dataset G31). The distribution of the data was 
consistent with data from the NR: monthly flying fox counts ranged from 0 to 140, median 6; pre-
weaning reproductive output ranged from 4 to 99, median 86. 
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Supplementary Table 2 – Summary of months in each year between 2006–2020 assessed as food 
shortages in apiarist data and by the regression tree model (Northern Rivers) 

 

Year 
Food shortage 

months identified 
by apiarists 

Food shortage months 
identified by regression 

tree (2006-2020) or 
regression tree rules 

(1998-2003)  

Number 
of months 
consistent 

across 
methods 

Comments 

1998 Oct, Nov Oct, Nov 12  
1999 - - 12  
2000 Sep, Oct, Nov Sep, Oct, Nov 12  
2001 - - 12  
2002 - - 12  
2003 Jul, Aug 2003 * * *Partial data 
2004 - - * * *Partial data 
2005 - - * * *Partial data 
2006 - - 12  

2007 Jul, Aug, Sep, Oct, 
Nov Jul, Aug, Sep, Oct, Nov 12  

2008 - - 12  
2009 - - 12  

2010 Jun, Jul, Aug, Sep, 
Oct, Nov Jun, Jul, Oct, Nov 10 

Intake in Aug (n = 26) and Sep (n = 15) 
was below threshold.  

2011 - - 12  

2012 Oct - 11 

Reproductive output data was consistent 
with food shortage in nearby Mid North 
Coast roosts (min 63) but not at the single 
roost assessed in the Northern Rivers 

2013 Nov Oct, Nov 11 

Daily intake data indicate that flying fox 
encounters started to increase on 26th 
October, enough to push October intakes 
over the threshold (n = 32). 

2014 - - 12  
2015 - - 12  
2016 Nov Nov 12  
2017 - - 12  
2018 - - 12  

2019 Sep, Oct, Nov Aug, Sep, Oct, Nov, Dec 10 

Daily intake data indicate that flying fox 
encounters started to increase on 22th 
August, pushing August intakes over the 
threshold (n = 42). Encounters were 
elevated until 9th December, also pushing 
December intakes over the threshold (n = 
44). 

2020 - - 12  

* Partial Data: Reproductive output is consistent with a food shortage in 2003, but no winter/spring encounter 
data is available to enable predictions of months. Reproductive output is consistent with no food shortage in 
2004 or 2005, but there is no encounter data to fully assess. 
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Supplementary Table 3.  Summary of months between 2006–2020 assessed as food shortages 
by apiarist data and by the regression tree model (Northern Rivers) 

 Model: 
shortage 

Model: 
not shortage 

 
Total 

% model output 
consistent 

with apiarist data 
Apiarist: 
shortage 

14 3 17 82.4% 

Apiarist:  
not shortage 

3 150 153 98.0% 

Total 17 153 170 96.5% 
 

 
When we applied the rules from the regression tree model to these data to classify months as food 
shortage (monthly flying fox encounters ≥30 and pre-weaning percentage females with young <79), 
the annual designations classified consistently with the apiarist assessments in all 17 years and the 
monthly designations classified consistently with the apiarist assessments in 173/183 (94.5%) of the 
months. The food shortage in October 2012 was clearly identified as such, based on 68 encounters 
and minimum 63 percent reproduction.   

Our two aims in these analyses were to (1) test the association between data on nectar 
productivity collected from apiarists (as a proxy for nectar availability for flying foxes) and measures 
of flying fox fitness, and in turn, (2) assess whether fitness measures are a useful proxy for 
identifying years of acute food shortages. Given that nectar shortage conditions identified by 
apiarists were correctly identified by the regression tree model in 96.5% of months over a 14-year 
period using two variables of flying fox fitness in the Northern Rivers data (flying fox intakes to 
wildlife rehabilitators and annual reproductive output), and in 94.5% of months over a 15 year period 
in the Mid North Coast data, our findings support the expectation that reduced flowering in native 
diet plants affects flying fox survival and reproductive output, likely via starvation. 

Overall, the strong correlation between the apiarist assessment of food shortages and the 
monthly number of flying foxes recorded by wildlife rehabilitation organizations and percent of 
females with young in the associated birth cohort indicates that either of these approaches are likely 
to be suitable proxies for food shortages in flying fox populations. We note that reproduction data 
should be gathered from multiple roosts to accommodate the underlying variability in food shortage 
years shown in Extended Data Figure 2A. On the basis of these results and the consistent acquisition 
of apiary data throughout the study period, we used apiarist data to assign years of food shortages in 
the Bayesian Network model (Supplementary Information Section 13) and months of food shortages 
in Fig. 2 and Extended Data Fig. 2B. The 9 years of acute food shortage identified in our study area 
were: 1998, 2000, 2003, 2007, 2010, 2012, 2013, 2016 and 2019. We also conclude that future 
studies could reasonably use flying fox intakes and reproductive output to identify food shortage 
years where apiarist data is unavailable or prohibitively difficult to acquire. 

 

8. Relationship between foraging sites and roost sites 

Foraging areas around flying fox roosts in southeast Australia have previously been defined by 
buffers of 20km radius, an area understood to encompass the typical foraging distances of the 
animals55. This approach assumes overlap in the foraging areas of neighboring roosts is 
unconstrained. However, there is increasing evidence that colonial species, including fruit bats, 
spatially partition the resources around neighboring colonies, particularly those that are separated 
by distances shorter than typical foraging distances67,68. In our study area, rapidly increasing 
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numbers of roosts are separated by distances considerably shorter than 20km (Extended Data Fig. 
5A) and we propose that a set radius of that length no longer adequately describes the foraging areas 
of the majority of roosts. Rather, we propose that as the number of roosts in a local area increases, 
flying foxes reduce the distances they fly between roosts and foraging sites (individual feeding trees) 
and typically occupy the roost closest to their foraging sites.  

8.1  Methods 

To test this concept, we assessed the relationship between foraging sites and roosting sites in 
black flying foxes (BFF; P. alecto) and grey-headed flying foxes (GHFF; P. poliocephalus) using 
foraging movement data compiled from ten telemetry studies (n=6 studies of BFF, n=4 studies of 
GHFF) conducted between 1989 and 2015 (Data Index7 Dataset H, Supplementary Table 4). 

Studies were selected for inclusion if: 
1. presence / absence occupancy status of neighboring roosts was known at the time of 

the study; and 
2. the locations of roosts and foraging sites were accurately documented. 

Roosting site-foraging site pairs (R-F pairs) were included if: 
1. the study animal departed from and returned to the same roost during the foraging bout, 

creating an unambiguous association between roost site and foraging site; 
2. the nearest neighboring roost was < 20km distant; 
3. the pairwise association described a discrete R-F pair (i.e. eliminating replication from 

repetition in nightly foraging bouts.) 

 

Supplementary Table 4. Records of 251 paired roosting sites and foraging areas (R-F pairs) 
of grey-headed flying foxes (GHFF; P. poliocephalus) and black flying foxes (BFF; P. alecto) 
as documented in 10 telemetry studies conducted from 1989 to 2015. Counts and proportions of R-
F pairs where study animals occupied the roost nearest their foraging sites are given, summarized 
by species, telemetry type and source study. Data sources are fully referenced in Data Index7 

Dataset H. The data indicated that BFF and GHFF occupy the roost located nearest their foraging 
sites 95% (n=63) and 96% (n=188) of the time, respectively. 

Study location and years Telemetry 
Type 

Dominant land cover 
type(s) in study area Species 

Number 
of R-F 
pairs 

Number 
 R-F pairs  
& nearest 

roost 

Proportion 
R-F pairs 
& nearest 

roost 
Sunshine Coast, QLD; 2015 Satellite urban, agriculture, forest BFF 4 4 1 
RBGS; Sydney NSW; 2011 Radio VHS Urban BFF 6 5 0.83 
RBGS; Sydney NSW; 2012 Radio VHS Urban BFF 15 15 1 
Roberts; Maclean NSW 2012 Satellite urban, agriculture, forest BFF 10 10 1 
Markus; Brisbane QLD 1998-2000 Radio VHS Urban BFF 16 15 0.94 
RBGS; Sydney NSW; 2010 Radio VHS Urban BFF 12 11 0.92 
Eby; NE NSW; 1989-1990 Radio VHS agriculture, forest GHFF 12 12 1 
RBGS; Sydney NSW; 2010 Satellite urban, agriculture, forest GHFF 12 9 0.75 
RBGS; Sydney NSW; 2011 Radio VHS Urban GHFF 13 13 1 
RBGS; Sydney NSW; 2012 Radio VHS urban, forest GHFF 18 17 0.94 
Roberts; Sth QLD NSW; 2007-2008 Satellite urban, agriculture, forest GHFF 133 130 0.98 
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For each species we calculated the proportion of R-F pairs in which study animals occupied the 
roost nearest the foraging site. To obtain intervals expressing uncertainty in the estimates, a 
hierarchical bootstrap was performed with 10,000 bootstrap samples, combining data across sources 
within a species. For GHFF, an additional analysis was performed using data from one study that 
provided the majority of data points (Supplementary Table 4; Roberts 2007-2008). The results of 
the hierarchical bootstrap were compared with the regular bootstrap procedure, and the more 
conservative estimates used. 

8.2  Results 

The dataset comprised 251 R-F pairs. The data indicated that BFF and GHFF occupy the roost 
located nearest their foraging sites 95.2% (n=63) and 96.3% (n=188) of the time, respectively. The 
proportion of flying foxes returning to the nearest roost after foraging did not differ meaningfully 
by study (Supplementary Table 4, and below). Bootstrapping produced the following 95% 
confidence intervals (95% CI): 

All BFF (6 studies): 
n = 60 return to nearest roost from n=63 data points; 95.2%  
95% CI: 0.889–1.000. 

All GHFF (4 studies): 
n = 181 return to nearest roost from n=188 data points; 96.3% 
95% CI: 0.931–0.989 

GHFF Roberts (2007-2008) only: 
n = 130 return to nearest roost from n=133 data points; 97.7% 
95% CI: 0.947 –1.000  

Based on these results, we assume BFF and GHFF occupy the roost nearest their foraging site. 
To define foraging area boundaries, we set a maximum foraging distance of 20km, then constrain 
this boundary by the mid-point of distances to neighboring roosts, which we define by Voronoi 
cells. We believe this to better approximate foraging area boundaries than uniform radius and we 
used this method to define and characterize foraging areas associated with individual roosts 
(Supplementary Information Section 9) and identify source roosts for Hendra virus spillovers 
(Supplementary Information Section 10). 

 

9. Characteristics of foraging areas over time 

We described long-term change in characteristics of the foraging areas available to flying 
foxes in the study area by comparing a series of attributes of the foraging areas associated with 
roosts active in 1998 and 2019 (Dataset B26; Supplementary Information Section 4). 

Based on the identified relationship between foraging sites and roost sites (Supplementary 
Information Section 8), we defined the boundaries of discrete foraging areas around individual 
roosts by calculating Voronoi tessellations with roost sites as point locations and 20 km foraging 
distances55 as the window boundary (‘Spatstat’ package in R69). Voronoi diagrams of the study area 
were recalculated in each year based on the list of active roosts for that year. We considered that 
roosts known to have been vacant during the previous 2 years did not influence the foraging areas 
of neighboring sites, and those roosts were excluded from calculations. Census data and informal 
observations of roosts were scrutinized to determine recent occupation.  
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To describe the increase in roosts in urban areas we plotted the scaled density of distance to 
nearest built land (Extended Data Fig. 5B). To summarize changes in the relationship between 
foraging area size and the proportion of the foraging area that is built land we fit a generalized 
additive model (GAM) with a thin plate regression spline smoother using the ‘mgcv’ package in 
R70. We used foraging area size as the predictor and proportion of the foraging area that is urban as 
the response and plotted the smoothed regression line (Extended Data Fig. 5C). 

 We then characterized changes in the land cover composition of foraging areas associated 
with roosts occupied by black flying foxes during winter in each of the 25 years of our study, 1996 
through 2020 (Dataset B26). We created boundaries for the foraging areas of roosts occupied in each 
winter using the methods described in Section 8. We used historical 30-m resolution land cover 
maps created at 5-year time steps71 to characterize changes in the land cover composition of foraging 
areas (Dataset I28). The maps classified land cover into six broad classes: built land, cropland, 
grassland, forest, water and other. We matched the Voronoi diagrams for each study year to the 
closest time-step in the map series (1995, 2000, 2005, 2010, 2015) and clipped the landcover map 
to foraging area boundaries. We then filtered the data to include only sites occupied by black flying 
foxes. Spatial data was projected to Australia Albers / GDA94 coordinate reference system. 

We characterized changes in the land cover composition of the foraging areas associated with 
each roost by calculating 1) the size of the foraging area (km2), 2) the area attributed to each of built 
land, forest and agriculture (combined cropland and grassland), and 3) the proportion of the area 
attributed to each land cover type. Finally, in each year we calculated the total area of each land 
classification (built, forest, and agricultural) within the combined foraging areas of the winter roosts 
of black flying foxes (Extended Data Fig. 5C). 

 

10.  Source roost of spillover 

Hendra virus transmission occurs as a result of flying foxes foraging on horse properties8,9. 
Using the analyses in Supplementary Information Section 8 that demonstrate that flying foxes roost 
in sites closest to their foraging areas, we assumed that the occupied roost (Dataset B26) closest to 
the spillover site (Dataset A12) was the likely source of bats responsible for the spillover event. We 
explored the implications of misspecification of the spillover-roost (described in Supplementary 
Information Section 13.4). For spillovers with a plausible second most likely roost, we explored the 
impact of shifting the attributions to the second roosts. In total, this resulted in a net shift of one 
spillover in an urban area to an agricultural area. So even if all the roost assignments were mis-
specified, the result would be minimal. 

 

11.  Winter flowering pulses 

Individual eucalypt species in the diet of flying foxes in the Australian subtropics are 
productive for periods ranging from 6 weeks to >3 months. The animals are notably adept at tracking 
these ephemeral resources, and large aggregations of nomadic animals can form rapidly when 
flowering commences22. Few forested areas produce sufficient nectar and pollen to attract roost 
populations >50,000. 

Over 75% of horse deaths from Hendra virus spillovers in the Australian subtropics occur in 
the Austral winter from June through August (Dataset A12; Fig. 1). We observed over 15 years that 
highly productive, long duration winter flowering of a single species of eucalypt, Corymbia 
maculata spotted gum, coincided with the only years from 2005 to 2020 in which no winter case 
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Supplementary Table 5A. Evidence of pulses of winter flowering in flying fox diet plants in 
the subtropics of eastern Australia associated with aggregations of >100,000 P. alecto and P. 
poliocephalus in a single roost (Dataset J32). A key to roosts is provided in Supplementary Table 
5B. Data sources are referenced in the Data Index7.   
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table 5B.  
Key to the roosts recorded as occupied by >100,000 P. alecto and P. poliocephalus during the 
Austral winter in each year from 1997 through 2020 and shown in Extended Data Figure 9 
(Supplementary Table 5A, Dataset J32). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Key Roost Name State 

A Craignish Heights QLD 
B Woocoo NP QLD 
C Gympie QLD 
D Kandanga QLD 
E Indooroopilly QLD 
F Woodend QLD 
G Lismore Currie Park NSW 
H Lismore Rotary Pk NSW 
I Bingara NSW 
J Tamworth NSW 
K Stewarts Brook NSW 
L Millfield NSW 
M Morisset NSW 
N Kioloa NSW 
O Batemans Bay NSW 
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was recorded. Mass flowering of that species at 3- to 5-year intervals supports flying fox roost 
populations that can exceed 200,000 for >3 consecutive months55. From these observations we 
hypothesized that highly productive pulses of winter flowering may moderate the risk of spillover 
and gathered historical data to assess this hypothesis. 

There currently is no remote method available for monitoring temporal and spatial variations 
in eucalypt flowering at scale, although advances are being made63. We used the size of roosts 
occupied by BFF and GHFF as an index of nectar production and defined a highly productive pulse 
of flowering as a resource sufficient to support an estimated population of >100,000 flying foxes at 
a single roost. We set this threshold based on the unambiguous association between roosts this size 
and highly productive flowering pulses14; and the substantial influence roosts this size have on 
overall bat distribution and foraging patterns. When aggregations of >100,000 occurred in 
individual roosts, animals within these aggregations accounted for 34% to 63% of the total 
population, estimated within synchronous censuses. Only 0.09% of 1,563 winter roost counts from 
1997-2019 were >100,000 whereas 92% of roost counts were <10,000. The results described here 
were not sensitive to a change in the threshold to 80,000. We then used winter roost census records 
from 1997 to 2020 acquired from various sources (see Data Index7) to identify flower pulses on the 
basis of roost populations >100,000 and estimate monthly start and duration (Dataset J32). This work 
enabled us to 1) explore overlap between the putative date of spillover (14 days prior to the date of 
death listed in Dataset A12) and flowering pulses (Fig. 2C), 2) document the location of winter 
aggregations (Supplementary Table 5A-B, Extended Data Fig. 9) and 3) identify candidate diet 
species either known to be in flower at the time large aggregations formed based on apiary data and 
records of field ecologists, or likely to have been in flower at the time based on their seasonal 
phenology and distribution16. 

We scaled our study to the mobility of nomadic flying foxes and monitored winter 
aggregations throughout southeast Australia (latitude -24.6 to -38.8).  We were unable to source 
data on roost size in winter in six years, 1999, 2003, 2004, 2006, 2008 and 2014 (Supplementary 
Table 5), and identified five years in which either no roosts >100,000 were reported or aggregations 
of that size persisted for <2 weeks of the 3-month winter period, 2007, 2011, 2013, 2015 and 2017 
(Fig. 2C). We identified seven species of winter-flowering diet plants that potentially contributed 
food resources in vegetation surrounding roosts at the time of large aggregations (in our study area: 
E. robusta, E. siderophloia, E. tereticornis Melaleuca quinquenervia and Banksia integrifolia; E. 
albens on the inland slopes of NSW; and C. maculata in the Hunter Valley of NSW and the NSW 
south coast; Extended Data Fig. 9). Over the 24-year study, large winter aggregations formed at 15 
roosts (Dataset J32, Extended Data Fig. 9, Supplementary Table 5). Eight of the roosts were located 
in our study area. The most distant was approximately 600 km south of the nearest study area 
boundary. 

A subset of these data, restricted to roosts in the SEQ study area, was used to describe changes 
in the incidence of large winter aggregations in this region during the study period. These large 
aggregations were observed to be frequent between 1996-2002 but rare between 2007-2020 (Dataset 
C27, Extended Data Fig. 5F). 

 
12.  Change in winter habitat in far southeast Queensland (SEQ) 

1996–2018  

To explore associations between environmental change and changes in bat behaviors we 
described loss of winter foraging habitat in the SEQ study area where long-term monthly roost 
censuses could be used to document behavioral change (Supplementary Information Section 5, 
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Extended Data Figure 4, Dataset C27). We identified five diet species that flower in this area during 
the winter bottleneck period: Melaleuca quinquenervia, Eucalyptus robusta, E. siderophloia, E. 
tereticornis and Banksia integrifolia. Using Queensland Regional Ecosystems (RE) vegetation 
classifications72, modelled pre-clearing RE maps, Statewide Landcover and Trees Study (SLATS) 
land use data73, and remotely sensed high-resolution (30m pixel) Global Forest Cover data74 
(Datasets K-M7), we mapped the distribution and area (ha) of this key winter habitat prior to 
European settlement and annually from 1996-2018. We generated maps of the distribution of habitat 
pre-clearing, at the start of the study period in 1996, and at the end of this study in 2018. 
Replacement land cover for each pixel of cleared land was assigned to one of seven broad categories 
in the SLATS data: crop, infrastructure, mine, natural disaster damage, pasture, settlement, thinning. 
These assignations were used to calculate the percentage of the total habitat cleared during the study 
that could be attributed to urban expansion or agricultural intensification. 

All spatial data was projected to WGS84 Australian Albers Equal Area Conic projection for 
analyses and clipped to the study area boundary. 

12.1  Identify key winter bottleneck habitat 

We used the uniform vegetation classification for Queensland, Regional Ecosystems (RE), to 
describe the distribution of the five winter diet species72, and identified key winter habitat as REs in 
which at least one of the five occurs as a dominant in the upper stratum. 

12.2  Describe area and distribution of key winter habitat pre-clearing 

To describe the distribution and area (ha) of key winter habitat prior to European settlement, 
we removed from the map of modelled pre-clearing RE data all vegetation that did not contain the 
winter diet plants as dominants. We then calculated the area of each remaining RE and generated a 
map of the distribution of winter habitat pre-clearing (Dataset K, see Data Index7, Extended Data 
Fig. 5D). 

12.3  Base map of winter habitat 1996 

To examine annual patterns of loss in key winter habitat from 1996 to 2018, we first created 
a base map of the habitat extant in 1996. We used remotely sensed high-resolution (30m pixel) 
Global Forest Cover data to generate a map of forest cover in 2000, the only year in which full 
coverage of forest cover was available (Dataset L, see Data Index7). The data reports percentage 
canopy cover for vegetation of height >5m within each 30m pixel. We filtered the data for pixels of 
<15% canopy cover. This removed from the data small clusters of trees in urban settings which we 
considered unlikely to represent remnants of pre-clearing vegetation. Larger areas of non-native 
vegetation in horticultural plantings and plantation forests (primarily pine plantations) were 
identified from Queensland SLATS land use data (Dataset M, see Data Index7)73 and were also 
removed. 

We acquired remotely sensed 30m pixel data of woody vegetation clearing across Queensland 
recorded in the SLATS land use data bi-annually 1995-1996 to 1998-1999, and then annually to 
2018. We allocated total bi-annual clearing values in the 1995-1996 and 1998-1999 data evenly 
across each of the two years.  

To define forest cover at the start of our study period in 1996, we merged clearing data from 1996 
to 2000 and added those pixels to the 2000 forest cover data to create a raster of forest cover in 
1996. The raster data was intersected with pre-clearing distribution of winter bottleneck REs to 
produce a base map of the distribution of key winter habitat in 1996. 
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12.4  Loss of key winter habitat 1996-2018 

To describe annual loss of key winter habitat from 1996-2018 we intersected each set of 
annual clearing data with pre-clearing key winter habitat data; then progressively removed pixels 
cleared in each year to calculate annual area loss (ha). We calculated (1) percentage of pre-clearing 
habitat that remained each year from 1996 to 2018 (Extended Data Fig. 5E), (2) cumulative area 
cleared (Extended Data Fig. 5H), and (3) annual rate of loss as a percentage of the habitat that 
remained in the previous year (Extended Data Fig. 5G). We fit a smooth loess function to the latter, 
with a single outlier excluded (2003) to visualize trends in rates of annual clearing across years. 
Finally, we generated maps of the distribution of habitat at 3 time points: pre-clearing, at the start 
of the study period in 1996, and at the end of this study in 2018 (Extended Data Fig. 5D).   

Replacement land cover for each pixel of cleared land was assigned in the SLATS data to one 
of seven broad categories: crop, infrastructure, mine, natural disaster damage, pasture, settlement, 
thinning. These assignations were used to calculate the percentage of the total habitat cleared during 
the study that could be attributed to urban expansion (combined settlement and infrastructure = 
65%) or agricultural intensification (combined pasture, crop and thinning = 33%). 

 

13.  Multiscale Bayesian Network Model 

Bayesian networks can learn and display conditional dependence between variables. Rather 
than pre-specifying a network structure, network models can identify and visualize relationships 
between variables. The network structure displays variables as nodes, and the edges, or lines as 
connecting nodes. The variables that are not connected are conditionally independent, whereas, 
variables with edges connecting them are related. Mathematically, a network model assesses the 
joint likelihood of the variables and determines whether the data supports a factorization that implies 
conditional independence. Practically, this factorization and the associated network are a visual 
representation of the mechanism of the scientific process. 

Estimating a Bayesian network model consists of learning the graphical structure of the 
network and estimating the conditional probability distributions. Given that our focus is on 
prediction, we evaluate models with a Leave-One-Out (LOO) cross-validation approach75. In 
particular, the loo package76 in R77 is used to evaluate the Expected Log pointwise Predictive 
Density (ELPD) of candidate network models.  

The multiscale and longitudinal structure of our collection of datasets violates independence 
assumptions and prohibits using existing software to learn the network structure or estimate 
conditional probabilities. There is a multiscale structure where some variables are recorded at the 
roost level, while others have a larger spatial range. Additionally, occupied roosts are included for 
multiple years over the course of the study. Hence, we developed a multiscale Bayesian network 
model to appropriately handle the structure of the data and evaluate network structures and learn 
conditional probability distributions of the variables34.  

13.1  Data Overview 

 We developed the hypothesis that the combination of climate-driven food shortages, land use, 
and winter flowering pulses are predictive for spillover, and derived six variables that represent these 
processes from key data:  Oceanic Niño Index (ONI), food shortage, roost fissioning, land use within 
roost foraging area, a winter flowering pulse, and spillover at a roost (Supplementary Information 
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Fig. 1). We acknowledge that variables we are unable to measure also have influence, such as the 
susceptibility of recipient hosts, horses. However, we hypothesize that the variables we have 
identified are sufficient to identify and predict periods of high risk, which we define by clusters of 3 
or more spillovers in a single winter, and periods of very low risk, which we define as winters with 
no or one spillover. 

We hypothesize that the impact of climate on food shortages operates with a one-year lag and 
the impact of food shortages on spillover operates with a further one-year lag. Land use and spillover 
are local and the other variables are global.  

Maximum Annual Oceanic Niño Index (ONI): ONI is a global measurement that we mapped 
into a single binary variable, for each year, to identify strong El Niño events > 0.8 (Supplementary 
Information Section 6).  

Food shortage: A binary variable for at least one month identified as a period of food shortage 
during a given year (Supplementary Information Section 7).  

Roost fissioning:  Roost fissioning is the number of new roosts established during a given year 
(Supplementary Information Section 4). 

Land Use at Roost: Land use at the roost level is a composite variable derived from satellite 
imagery. To distinguish foraging areas that were less likely to contain horses (i.e. densely forested or 
densely urban) from those more likely to contain horses (i.e. more agricultural or a mosaic of land 
use types), we used thirty-meter resolution maps to quantify the portion of the roost’s foraging area 
that can be classified as three categorical responses (Supplementary Information Section 9, Dataset 
I34). These three categories included: forest with over 75% of the foraging area as forested, urban 
with over 25% of the foraging area as built, and a final category that captures mosaic agricultural 
and lower-density, built environments (Fig. 3). The final results are not sensitive to small departures 
(~10%) from these threshold values between land use categorization. 

Winter flowering pulse: A binary variable for a sustained pulse of native flowering during 
winter of a given year assessed by aggregations of >100,000 bats at a single roost (Supplementary 
Information Section 11). 

Source roost of spillover:  Locations of spillovers are established (Dataset A12) and allocated 
to the nearest roost (Supplementary Information Section 10). Data are counts of spillovers associated 
with each roost occupied by P. alecto in each winter. The final results are not sensitive to this 
allocation process. 
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Supplementary Information Figure 1. Six variables (in colors) hypothesized to predict Hendra 
virus spillover were derived from 12 sets of data (left hand column) according to this flow diagram.  
Variables are described in Supplementary Information Sections 1-11. 

13.2  Model Specification  

Given the multiscale and longitudinal nature of the data, we describe a series of statistical 
probability distributions that appropriately handle this unique data structure and compose the joint 
probability distribution for the Bayesian networks. The responses for our set of variables are 
primarily binary or categorical, but roost counts also have discrete values. Binomial and multinomial 
probability distributions are used for binary and categorical data, while a negative binomial 
probability distribution is used for the discrete counts. Despite the moniker, Bayesian networks do 
not actually conduct fully Bayesian inference; to do so, we specify prior probability distributions on 
parameters of interest.  

To evaluate a set of Bayesian network models requires computing probability distributions for 
each variable conditional on other parameters in the network. To evaluate a network, probability 
distributions are fit for each variable and ELPD is calculated for the full joint conditional 
distribution. Networks with the largest ELPD values are preferred.  

Binomial Data: With a binary response and no longitudinal measurements across sampling 
units, a Bernoulli distribution can be used to model the probability of the binary outcome. This 
distribution is used for modeling food shortage and ONI, both of which are annual variables that 
apply globally to the entire study area. 

In particular, let yi be the binary outcome, θ is the probability of a success, and a and b are 
parameters in the prior distribution for θ. 
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yi ∼ Bernoulli(θ)                                                                (1) 

θ ∼ Beta(a, b)                                                                    (2) 

For these analyses both a and b=1. 

Multinomial Data: Similar to the binary case, for a categorical response with no longitudinal 
measurements across sampling units, a multinomial distribution can be used. Given that winter 
flowering pulse contains positive values, negative values, and unknowns, there are three possible 
outcomes. Hence, a multinomial distribution allows us to simultaneously model the probability of 
all three categories. 

Now let yi be a vector that denotes whether the ith response was in category 1, 2, or 3 and θ is 
vector of probabilities that correspond to categories 1, 2, and 3. 

yi ∼ Multinomial(θ) (3) 

θ ∼ Dirichlet(κ × φ) (4) 

 

The prior distribution on θ contains a concentration parameter κ and a mean parameter for the 
probabilities, φ. For these analyses κ = 1 and φ = (1/3, 1/3, 1/3). 

Hierarchical Binomial Data:   When considering spillover at the roost level, the same roost 
will be included for multiple years. To account for the heterogeneity in spillover probability for a 
roost, we introduce a hierarchical binomial model that accounts for including the same roost 
multiple times. Specifically, each roost will have a roost-level spillover probability θi, which come 
from a hierarchical distribution that governs the spillover probability from all of the roosts. 

Let yij  be a binary variable to denote whether there is a spillover for the jth trial at the ith roost.  
As in14, a hierarchical distribution for θi is set with a Beta distribution with mean ω and dispersion 
κ. 

yij ∼ Bernoulli(θi) (5) 

θi ∼ Beta(ω(κ − 2) + 1, (1 − ω)(κ − 2) + 1) (6) 

ω ∼ Beta(aω, bω) (7) 

κ ∼ Gamma(aκ, bκ) (8) 

Finally, prior distributions are specified for ω and κ, where aω = 0.1, bω =10, aκ = 50, and bκ 
= 0.5. 

Hierarchical Multinomial Data:    The final scenario that we encounter in this analysis for 
categorical data is modeled with a hierarchical multinomial distribution. In this situation, land use 
has three possible outcomes, so a multinomial distribution is used, which is similar to the 
hierarchical binomial setting with longitudinal measurements for the sets of roosts.  
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Let yij be the vector of the response for the jth instance of the ith sampling unit. The vector θi 
contains a vector of probabilities for each class for roost i. 

yij ∼ Multinomial(θi) (9) 

θi ∼ Dirichlet(κ × φ) (10) 

φ ∼ Dirichlet(kφ × p) (11) 

κ ∼ Gamma(a, b) (12) 

Using the same parameterization as the multinomial model, we encode the Dirichlet 
distribution with a mean vector κ and a concentration parameter φ, both of which have a prior 
distribution. For these analyses kφ =1, p = (1/3, 1/3, 1/3), a = 50, and b = 0.5 

Negative Binomial Data: When considering the number of new (fissioned) roosts in a year a 
negative binomial distribution is used. Let yi be the number of new roosts in year i. We use a 
parameterization of the negative binomial that uses a mean and dispersion parameter 

yi ∼ Negbinomial(µ, φ) (13) 

µ ∼ Gamma(a, b) (14) 

φ ∼ Gamma(aφ, bφ) (15) 

 
13.3  Fitting Multiscale Networks 

Learning Graphical Structure: In exploring the relationships between the set of variables 
there are directional relationships that do not make sense with respect to time. For instance, a 
directional relationship from food shortage (previous year) to ONI values (2 years prior) does not 
make sense, but the opposite direction would be permitted. Supplementary Table 6 contains the 
edges that are restricted from the graphical structure. 

A total of 64 plausible networks structures34 were compared. The combination of LOO and 
ELPD compares the predictive ability of the model, by fitting the model on all the sampling units 
except the one left out for that cross-validation fold. 

 
Supplementary Table 6: The edges of the directional relationships listed below are restricted in 
the graphical structure of the Bayesian Network Model as they are nonsensical. 
 

FROM TO 

Winter Flowering Pulse ONI (2 years prior) 

Food Shortage (Previous Year) ONI (2 years prior) 

Winter Flowering Pulse Food Shortage (Previous Year) 

Food Shortage (Previous Year) Winter Flowering Pulse 

 

Estimating Conditional Probabilities: The network encodes the conditional probability 
structure between the variables, which maps to the mechanistic process to predict Hendra virus 
spillover. Based on this network, the probability of a spillover at a given roost in a given year would 
directly depend on whether there was a flowering pulse that year, a food shortage the previous year, 
and the land use type for the foraging area associated with the roost.  
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Simulation Test of Model Selection Procedure:  We tested the reliability of our model 
selection procedure in a simulation study. Using our selected model (Model 36), we 
generated >1,000 data sets that were similar to the real data (same number of observations, etc.) but 
stochastic realizations of the model, then used our automated modelling procedure to fit Multiscale 
Bayesian Networks to these simulated data, tallied the number of times the true model is selected, 
investigated which other models may also be selected, and documented the distribution of Delta 
LOOIC. The simulation mimics the structure of the dataset with the same number of years and the 
same number of roosts in a given year. The estimated model parameters are used to simulate all 
other components of the dataset: land use type, elevated Oceanic Niño Index (ONI), presence of a 
food shortage, presence of a winter flowering pulse, number of new fissioned roosts, and spillover 
from a roost. The conditional dependence structure of the model identified using the methods above 
is used for the simulation. 

Cross-validation Test of Predictive Capabilities: We tested the capabilities of our model to 
predict high and low risk conditions for spillover clusters using cross-validation. We randomly 
selected a portion of the dataset to remove from analysis and then used the rest of the dataset to make 
predictions for the held-out set. We used 5-fold cross validation to assess roost-year combinations 
in a specific fold. Predictions were made from a model fit on the roost-year combinations in the other 
four folds. The predictions of roost-year combinations were combined on an annual basis to calculate 
the predicted probability of a cluster of spillovers.  

13.4  Model Results 

We assessed a total of 64 different network models34. Leave one out cross validation results 
for the eight models most supported by the data are shown in Supplementary Table 7. The models 
were evaluated using Expected Log Pairwise Density (ELPD), where larger values indicate a better 
model. Note ELPD can be converted into an information criteria metric, Leave-One-Out 
Information Criteria (LOOIC), by multiplying by negative two.  

LOOIC is on the same scale as other information criteria, such as AIC, BIC, DIC, or WAIC. 
Despite being on the same scale as AIC, using cross-validation, as with LOOIC can minimize 
overfitting relative to traditional IC methods as the predictive density is being evaluated on a data 
point not used to fit the model. 

Supplementary Table 7 includes a sorted rank of the models with 10 LOOIC units from the 
best model. According to ELPD, and LOOIC, Model 36 is the best model, while the data also 
supports Model 40. The difference between Model 36 and Model 40 is the inclusion or exclusion of 
a connection between land use and spillover (Extended Data Fig. 6A). To a lesser extent, the data 
supports Model 33, which mimics Model 36 but has an additional connection between ONI and 
winter flowering. To make a determination of the best model, we interrogated the top two potential 
networks. 
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Supplementary Table 7: Leave one out cross validation results for top 8 models in the 
Bayesian Network analyses sorted by decreasing the Expected Log Pairwise Predictive Density 
(ELPD) / increasing Leave-One-Out information Criteria (LOOIC). 
 

Model ELPD LOOIC 
M36 -630.1 1260.2 
M40 -631.1 1262.1 
M33 -631.5 1263.0 
M38 -632.2 1264.5 
M34 -632.5 1264.9 
M53 -633.4 1266.9 
M42 -634.9 1269.7 
M4 -635.0 1270.0 

 
Estimation for network models is generally thought of as two distinct parts: fitting the network 

structure and estimating model parameters within a given network structure. In Model 36, the three-
way interaction between land use, winter pulse, and food shortages resulted in a total of 18 
parameters that corresponded to the probability of spillover as a combination of food shortage, 
winter flowering, and land use type. In Model 40, the two-way interaction between winter pulse and 
land use resulted in 6 parameters. Hence, by maintaining the same network structure, the complexity 
of these models was reduced substantially. 

On the basis of our long-term data, we developed the parsimonious hypothesis that the 
combination of food shortages with the lack of winter flowering will result in the highest risk of 
spillover, especially in areas where land use supports agriculture. It was not as clear whether 
spillover risk would differ appreciably across other combinations of food shortage and winter 
flowering. Hence, we considered collapsing some of the levels of combinations across these three 
variables. 

For Model 36 we considered more parsimonious models. The first contained two model 
parameters, a spillover probability for the food shortage, no winter spillover, and agricultural areas 
and a spillover probability for everything else. The second model contained four model parameters, 
a spillover probability for food shortage and winter spillover for each of the three land use types and 
a fourth spillover probability for everything else. With model 40 we evaluated a reduced model with 
no parameters that considers spillover probability for food shortage and no winter flowering and 
another spillover probability for everything else. 

Supplementary Table 8 shows that all of the reduced models improved ELPD / LOOIC values 
relative to the values for the full models for the specified network structures. Both of the models 
with 2 parameters had similar LOOIC values. The reduced model for network structure 36 with 4 
parameters had the best metric, with a value more than 2 units larger than competing models. While 
there was support for the 2-parameter models, the 4-parameter model for network structure 36 was 
a substantial improvement. 
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Supplementary Table 8: Leave one out cross validation results for reduced models from the 
Bayesian Network analyses, collapsing some of the interaction terms. Differences in leave-one-
out information criteria (LOOIC) are shown for models with reduced parameter spaces as well as 
the other top 8 models. 
 

Model D LOOIC 
M36: 4 parameters 0.00 
M36: 2 parameters 1.98 
M40: 2 parameters 5.85 
M36 7.67 
M40 9.57 
M33 10.47 
M38 11.97 
M34 12.37 
M53 14.37 
M42 17.17 
M4 17.47 

 
 

Extended Data Figure 6B includes the distribution of LOOIC values (from M36) for each of 
the models from our simulation study. M36 is the favored model and at least the first quartile is 
positive for all other models. This model was selected as the best model using LOOIC 50 percent 
of the time (Supplementary Table 9). Model probabilities are shown for the models with the ten 
highest frequencies of having the lowest LOOIC values. The only other models with notable 
frequencies are M33, M40, and M60. The inclusion of M33 and M40 is unsurprising as these were 
the 2nd and 3rd strongest models according to LOOIC in our study (Extended Data Figure 6A). 
Each model differs from M36 by a single node. For M33 this is the addition of a connection from 
ONI to winter flowering pulse (a connection that could be investigated with further study) and for 
M40 this is the removal of the connection between land use and spillover. The difference in LOOIC 
between M36 and M40 is almost 6 and the difference between M36 and M33 is over 10, after 
collapsing unnecessary interactions in M36. M60, at least anecdotally, results from simulations 
where there is limited information available to estimate the joint impact of food shortages without 
winter flowering pulses (e.g. a single year out of 25 with winter flowering and food shortages, 
making it hard to estimate the relationship with little data).  

Furthermore, we don’t use LOOIC as a discriminating boundary when LOOIC between two 
models are relatively close as this would provide support for both models. In total, M36 is within a 
2 LOOIC of the best model 70 percent of the time. In all 64 assessed Multiscale Bayesian Network 
models34, we observe a difference in LOOIC of 5.85. From the simulations, M36 is within a 5.85 
LOOIC of the best model 90 percent of the time. 

  



 

29 

Supplementary Table 9. Frequency of having the lowest leave-one-out information criteria 
(LOOIC) value across simulations. Top ten models are shown. M36 has substantially more support 
than any other model. 
  

Frequency of Best LOOIC Model 

0.500 M36 

0.132 M33 

0.069 M40 

0.061 M60 

0.045 M53 

0.044 M43 

0.029 M56 

0.026 M34 

0.020 M49 

0.015 M51 

 
 
13.5  Sensitivity Analysis to Roost Assignment 

Spillovers were assigned to the nearest roost; however, there was uncertainty in this process. 
To assess the impact of this we explored the implications of misspecification of the spillover-roost 
combination. With the modeling framework we are using, the total number of spillovers are 
aggregated by the combination of land use, winter flowering pulse, and food shortage. Given that 
food shortage and winter flowering pulse are global, and constant, across the study area for a specific 
year, we only needed to investigate the net impact on land use classification. For spillovers with a 
plausible second most likely roost, we explored the impact of shifting the attributions to the second 
roost. In total, this resulted in a net shift of one spillover in an urban area to an agricultural area. So 
even if all the roost assignments were mis-specified, the result would be minimal. 

13.6  Stan Code for Model Fitting  

The network model is fit using RStan78,79. Source stan code for each data type is provided below. 

Binomial Data  
data { 
  int<lower=0> N;               
  int<lower=0,upper=1> y[N];    
  real<lower=0> a;             
  real<lower=0> b;             
} 
parameters { 
  real<lower=0,upper=1> theta;  
} 
model { 
 theta ~ beta(a, b);  
  y ~ bernoulli(theta);  
} 
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generated quantities{ 
  vector[N] log_lik; 
  for (n in 1:N) log_lik[n] = bernoulli_lpmf(y[n] | theta); 
} 
 
Multinomial Data  
data { 
  int<lower =1> M;             
  int<lower=0> y[M];         
  vector[M] phi;                
  real<lower=0> kappa;    
  int N;                       
  int<lower=0> y_mat[N, M];   
} 
parameters { 
  simplex[M] theta;      
}  
model { 
  theta ~ dirichlet(kappa * phi); 
  // Count Data      
  y ~ multinomial(theta); 
} 
generated quantities{ 
  vector[N] log_lik; 
  for (n in 1:N) log_lik[n] = multinomial_lpmf(y_mat[n,] | theta); 
} 
 
Hierarchical Binomial Data 
data { 
  int<lower=0> M;              
  int<lower=0> y[M];         
  int<lower=0> N[M];  
  real a;                       
  real b;                       
  real a2;                     
  real b2;                     
  int<lower=0> tot_obs;     
  int group_index[tot_obs];  
  int y_vec[tot_obs];        
} 
transformed data{ 
  real<lower=0> num_obs; 
  num_obs = sum(N); 
} 
parameters { 
  real<lower=0,upper=1> omega;  
  real<lower=0> kappa; 
  real<lower=0,upper=1> theta[M];  
} 
model { 
  omega ~ beta(a, b);  
  kappa ~ gamma(a2, b2);    
  theta ~ beta(omega * (kappa -2) + 1, (1 - omega) * (kappa - 2) + 1); 
  y ~ binomial(N, theta);        
} 
generated quantities{ 
   vector[tot_obs] log_lik; 
   for (n in 1:tot_obs) log_lik[n] = bernoulli_lpmf(y_vec[n] | 
theta[group_index[n]]); 
} 
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Hierarchical Multinomial Data 
data { 
  int<lower=0> M;             
  int<lower=1> K;              
  int<lower=0> y[M, K];    
  simplex[K] p;                 
  real k;                       
  real<lower=0> a;       
  real<lower=0> b;       
  int<lower=0> N;            
  int<lower=0> y_mat[N,K];  
  int<lower=0> group_index[N];  
} 
parameters { 
  simplex[K] phi;            
  simplex[K] theta[M];     
  real<lower =0> kappa;     
} 
model { 
 phi ~ dirichlet (k * p);         
  kappa ~ gamma(a,b);            
  for (i in 1:M) { 
    theta[i,] ~ dirichlet(phi * kappa); 
  } 
  for (i in 1:M) { 
    y[i,] ~ multinomial(theta[i,]);       
  } 
} 
generated quantities{ 
  vector[N] log_lik; 
  for (n in 1:N) log_lik[n] = multinomial_lpmf(y_mat[n,] | 
theta[group_index[n]]); 
} 
 
Negative Binomial Data 
data { 
  int<lower=0> N;           
  int<lower=0> y[N];    
  real<lower=0> a;          
  real<lower=0> b;             
  real<lower=0> a_phi;           
  real<lower=0> b_phi;           
} 
parameters { 
  real<lower=0> mu; 
  real<lower=0> phi;  
} 
model { 
  mu ~ gamma(a, b);  
  phi ~ gamma(a_phi, b_phi); 
  y ~ neg_binomial_2(mu, phi);        
} 
generated quantities{ 
  vector[N] log_lik; 
  for (n in 1:N) log_lik[n] = neg_binomial_2_lpmf(y[n] | mu, phi); 
} 
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